Mozog: funkcie, štruktúra

Mozog je samozrejme hlavnou súčasťou ľudského centrálneho nervového systému.

Vedci sa domnievajú, že sa používa iba o 8%.

Preto sú jeho skryté možnosti nekonečné a nie sú študované. Neexistuje ani vzťah medzi talentmi a ľudskými schopnosťami. Štruktúra a funkcia mozgu znamená kontrolu nad celou životnou aktivitou organizmu.

Umiestnenie mozgu pod ochranou silných kostí lebky zabezpečuje normálne fungovanie tela.

štruktúra

Ľudský mozog je spoľahlivo chránený silnými kosťami lebky a zaberá takmer celý priestor lebky. Anatomisti podmienene rozlišujú nasledujúce oblasti mozgu: dve hemisféry, kmeň a malý mozog.

Ďalšia časť je tiež prijatá. Časti mozgu sú časové, čelné laloky a korunka a zadná časť hlavy.

Jeho štruktúra pozostáva z viac ako sto miliárd neurónov. Jeho hmotnosť je zvyčajne veľmi odlišná, ale dosahuje 1800 gramov, pre ženy je priemer mierne nižší.

Mozog pozostáva zo šedej hmoty. Kôra pozostáva z tej istej šedej hmoty, ktorú tvorí takmer celá masa nervových buniek patriacich k tomuto orgánu.

Pod ním je skrytá biela látka, pozostávajúca z procesov neurónov, ktoré sú vodiči, nervové impulzy sú prenášané z tela na subkortex pre analýzu, rovnako ako príkazy z kôry k časti tela.

Oblasti zodpovednosti mozgu za chod sú umiestnené v kôre, ale sú aj v bielej hmote. Hlboké centrá sa nazývajú jadrové.

Predstavuje štruktúru mozgu v hĺbkach svojej dutej oblasti pozostávajúce zo štyroch komôr, oddelených kanálmi, v ktorých cirkuluje kvapalina, ktorá vykonáva ochrannú funkciu. Na vonkajšej strane má ochranu od troch škrupín.

funkcie

Ľudský mozog je vládcom celého života tela od najmenších pohybov po vysokú funkciu myslenia.

Divízie mozgu a ich funkcie zahŕňajú spracovanie signálov z receptorových mechanizmov. Mnohí vedci sa domnievajú, že jeho funkcie zahŕňajú aj zodpovednosť za emócie, pocity a pamäť.

Podrobnosti by mali zvážiť základné funkcie mozgu, ako aj osobitnú zodpovednosť jej úsekov.

pohyb

Celá motorická aktivita tela sa týka riadenia centrálneho gyru, ktorý prechádza prednou stranou parietálneho laloku. Koordinácia pohybov a schopnosť zachovať rovnováhu sú zodpovednosťou centier umiestnených v okcipitálnom regióne.

Vedľa occiputu sú takéto centrá umiestnené priamo v cerebellum a tento orgán je tiež zodpovedný za pamäť svalov. Preto poruchy v cerebellum vedú k narušeniu fungovania muskuloskeletálneho systému.

citlivosť

Všetky senzorické funkcie sú riadené centrálnym gyrusom prechádzajúcim zadnou časťou parietálneho laloku. Tu je tiež centrum pre kontrolu polohy tela, jeho členov.

Zmyselné orgány

Centrá v temporálnych lalokoch sú zodpovedné za sluchové pocity. Vizuálne vnímanie osoby je zabezpečované strediskami umiestnenými v zadnej časti hlavy. Ich práca je jasne uvedená v tabuľke očného vyšetrenia.

Prepletené konvoly na križovatke temporálnych a čelných lalokov ukrývajú centrá zodpovedné za čuchové, chuťové a hmatové pocity.

Funkcia reči

Táto funkčnosť môže byť rozdelená na schopnosť produkovať reč a schopnosť porozumieť reči.

Prvá funkcia sa nazýva motor a druhá je senzorická. Miesta, ktoré sú pre nich zodpovedné, sú početné a nachádzajú sa v záhyboch pravého a ľavého hemisféry.

Reflexná funkcia

Takzvané oddelené oddelenie zahŕňa oblasti zodpovedné za životne dôležité procesy, ktoré nie sú ovládané vedomím.

Tieto zahŕňajú kontrakcie srdcového svalu, dýchanie, zúženie a dilatáciu krvných ciev, ochranné odrazy, ako je roztrhnutie, kýchanie a zvracanie, ako aj sledovanie stavu hladkých svalov vnútorných orgánov.

Shell funkcie

Mozog má tri mušle.

Štruktúra mozgu je taká, že okrem ochrany každá z membrán vykonáva určité funkcie.

Mäkká škrupina je navrhnutá tak, aby zabezpečovala normálny prívod krvi, konštantný tok kyslíka pre neprerušené fungovanie. Tiež najmenšie krvné cievy súvisiace s mäkkým puzdrom produkujú miechovú tekutinu v komorách.

Arachnoidná membrána je oblasť, v ktorej cirkuluje tekutina, vykonáva prácu, ktorú lymfa pôsobí vo zvyšku tela. To znamená, že poskytuje ochranu proti patologickým činidlám pred prenikaním do centrálneho nervového systému.

Pevná škrupina je priľahlá k kostiam lebky, spolu s nimi zabezpečuje stabilitu sivého a bieleho medulla, chráni ju pred nárazmi, posúva sa pri mechanických nárazoch na hlavu. Tiež pevný plášť oddeľuje jeho časti.

útvary

Čo tvorí mozog?

Štruktúra a hlavné funkcie mozgu sú vykonávané rôznymi časťami. Z hľadiska anatómie orgánu piatich častí, ktoré vznikli v procese ontogenézy.

Rôzne časti kontroly mozgu sú zodpovedné za fungovanie jednotlivých systémov a orgánov osoby. Mozog je hlavným orgánom ľudského tela, jeho špecifické oddelenia sú zodpovedné za fungovanie ľudského tela ako celku.

podlhovastý

Táto časť mozgu je prirodzenou súčasťou chrbtice. Bola vytvorená predovšetkým v procese ontogenézy a práve tu sú umiestnené centrá, ktoré sú zodpovedné za nepodmienené reflexné funkcie, ako aj s dýchaním, krvným obehom, metabolizmom a inými procesmi, ktoré nie sú kontrolované vedomím.

Zadný mozog

Prečo je zodpovedný zadný mozog?

V tejto oblasti je malý mozog, čo je redukovaný model orgánu. Je to zadné mozog, ktorý je zodpovedný za koordináciu pohybov, schopnosť udržiavať rovnováhu.

A je to pozdní mozog, kde sa prenášajú nervové impulzy cez neuróny cerebellum, prichádzajúce z končatín a iných častí tela, a naopak, to znamená, že celá fyzická aktivita osoby je kontrolovaná.

priemerný

Táto časť mozgu nie je úplne pochopená. Stredný mozog, jeho štruktúra a funkcie nie sú úplne pochopené. Je známe, že centrá zodpovedné za periférne videnie, reakcie na ostrý zvuk sa nachádzajú tu. Je tiež známe, že tu sú časti mozgu, ktoré sú zodpovedné za normálne fungovanie orgánov vnímania.

stredná

Tu je časť nazvaná talamus. Prostredníctvom nej prechádza všetky nervové impulzy posielané rôznymi časťami tela do stredísk umiestnených v hemisfére. Úlohou talamu je regulovať adaptáciu tela, poskytovať odpoveď na vonkajšie podnety, podporuje normálne zmyslové vnímanie.

V strednej časti je hypotalamus. Táto časť mozgu stabilizuje periférny nervový systém a tiež kontroluje fungovanie všetkých vnútorných orgánov. Tu je on-off organizmus.

Je to hypotalamus, ktorý reguluje telesnú teplotu, tón krvných ciev, kontrakciu hladkých svalov vnútorných orgánov (peristaltiká) a tiež vytvára pocit hladu a sýtosti. Hypotalamus kontroluje hypofýzu. To znamená, že je zodpovedný za fungovanie endokrinného systému, riadi syntézu hormónov.

Konečný

Posledný mozog je jednou z najmladších častí mozgu. Korpus callosum poskytuje komunikáciu medzi pravou a ľavou hemisférou. V procese ontogenézy vznikol posledný zo všetkých podstatných častí, tvorí hlavnú časť orgánu.

Oblasti konečného mozgu vykonávajú všetku vyššiu nervovú aktivitu. Tu je ohromujúci počet záhybov, úzko súvisí s subkortexom, prostredníctvom ktorého je celý život organizmu riadený.

Mozog, jeho štruktúra a funkcie sú pre vedcov z veľkej časti nepochopiteľné.

Mnohí vedci to študujú, ale stále sú ďaleko od riešenia všetkých tajomstiev. Zvláštnosť tohto tela spočíva v tom, že jeho pravá hemisféra ovláda prácu ľavej strany tela a je tiež zodpovedná za všeobecné procesy v tele a ľavá pologuňa koordinuje pravú stranu tela a je zodpovedná za talent, schopnosti, myslenie, emócie a pamäť.

Niektoré centrá nemajú dvojité postavenie v opačnej hemisfére, nachádzajú sa v ľavých rukách v pravom úseku av pravej ruke vľavo.

Na záver môžeme povedať, že všetky procesy, od jemných motorických zručností až po vytrvalosť a svalovú silu, ako aj emocionálnu sféru, pamäť, talenty, myslenie, inteligenciu, sú riadené jedným malým telom, ale so stále nepochopiteľnou a tajomnou štruktúrou.

Doslova je celý život človeka riadený hlavou a jej obsahom, preto je dôležité chrániť pred hypotermiou a mechanickým poškodením.

Štruktúra ľudského mozgu

Ľudský mozog je 1,5-kilogramový orgán s mäkkou hubovitou hustotou. Mozog pozostáva z 50-100 miliárd nervových buniek (neurónov) spojených viac ako biliard zlúčenín. To robí ľudský mozog (GM) najkomplexnejšou a - v súčasnosti - perfektnou známymi štruktúrami. Jeho úlohou je integrovať a spravovať všetky informácie, stimuly z vnútorného a vonkajšieho prostredia. Hlavnou zložkou sú lipidy (asi 60%). Potrava je zabezpečená dodávkou krvi a obohatením kyslíkom. Zdá sa, že GM sa podobá orechu.

Pohľad do histórie a modernity

Spočiatku bolo srdce považované za orgán myšlienok a pocitov. Avšak s rozvojom ľudstva sa určil vzťah medzi správaním a geneticky modifikovaným organizmom (v súlade so stopami trepanácie na nájdených korytnačkách). Táto neurochirurgia bola pravdepodobne používaná na liečbu bolesti hlavy, fraktúr lebky a duševných ochorení.

Z hľadiska historického porozumenia, mozog prichádza do centra pozornosti v antickej gréckej filozofii, keď Pythagoras a neskôr Platón a Galen ho chápali ako orgán duše. Významné pokroky vo vymedzení funkcií mozgu poskytli zistenia lekárov, ktorí na základe autopsií skúmali anatómiu orgánu.

Dnes používajú lekári EEG, zariadenie, ktoré zaznamenáva činnosť mozgu prostredníctvom elektród, študovať GM a jeho činnosť. Metóda sa tiež používa na diagnostiku nádorov mozgu.

Na odstránenie novotvaru ponúka moderná medicína neinvazívnu metódu (bez incízie) - stereochirurgickú liečbu. Ale jeho použitie nevylučuje použitie chemickej terapie.

Embryonálny vývoj

GM sa vyvinie počas embryonálneho vývoja z prednej časti nervovej trubice, ku ktorej dochádza v treťom týždni (20 až 27 dňa vývoja). Na hlavnom konci neurálnej trubice sa vytvoria 3 primárne cerebrálne vezikuly - predné, stredné a zadné. Zároveň je vytvorený okcipitálny frontálny región.

V 5. týždni vývoja dieťaťa tvoria sekundárne mozgové vezikuly, ktoré tvoria hlavné časti dospelého mozgu. Predný mozog je rozdelený na stredné a konečné, späť - do pónov, malého mozgu.

Cerebrospinálne tekutiny sa tvoria v bunkách.

anatómia

GM ako energetické, kontrolné a organizačné centrum nervového systému je uložené v neurokraniách. U dospelých je jeho objem (hmotnosť) približne 1500 g. Špecializovaná literatúra však vykazuje veľkú variabilitu v hmotnosti GM (u ľudí aj u zvierat, napríklad u opíc). Najmenšia hmotnosť - 241 g a 369 g, rovnako ako najväčšia váha - 2850 g boli zistené u predstaviteľov obyvateľstva s ťažkou mentálnou retardáciou. Rozdielny objem medzi pohlaviami. Hmotnosť mužského mozgu je o 100 g viac ako samica.

Miesto mozgu v hlave je vidieť na rezu.

Mozog spolu s miechom tvorí centrálny nervový systém. Mozog je umiestnený v lebke, chránený pred poškodením kvapalinou, ktorá naplnila lebečnú dutinu, cerebrospinálnu tekutinu. Štruktúra ľudského mozgu je veľmi zložitá - zahŕňa aj kôru, ktorá je rozdelená na dve hemisféry, ktoré sú funkčne odlišné.

Funkciou správnej hemisféry je vyriešiť kreatívne problémy. Je zodpovedný za vyjadrenie emócií, vnímanie obrázkov, farieb, hudby, rozpoznávania tváre, citlivosti, je zdrojom intuície. Keď sa človek najprv stretne s problémom, problémom, práve táto pologuľa začne pracovať.

Ľavá hemisféra dominuje v úlohách, s ktorými sa človek už naučil zvládnuť. Metaforicky sa ľavá hemisféra dá nazvať vedeckou, pretože zahŕňa logické, analytické, kritické myslenie, počítanie a používanie jazykových zručností a inteligencie.

Mozog obsahuje 2 látky - sivé a biele. Sivá hmota na povrchu mozgu produkuje kôru. Biela hmota sa skladá z veľkého počtu axónov s myelínovými poťahmi. Je pod šedou hmotou. Zväzky bielej hmoty prechádzajúcej cez centrálny nervový systém nazývané nervový systém. Tieto cesty poskytujú signalizáciu iným štruktúram CNS. V závislosti od funkcie sú cesty rozdelené na aferentné a eferentné:

  • aferentné cesty prinášajú signály do šedej hmoty z inej skupiny neurónov;
  • eferentné dráhy tvoria axóny neurónov, vedúce signály do iných buniek CNS.

Ochrana mozgu

Ochrana GM zahŕňa lebku, membrány (meningi) a cerebrospinálnu tekutinu. Okrem tkaniva sú nervové bunky CNS tiež chránené pred vystavením škodlivým látkam z krvi hematoencefalickou bariérou (BBB). BBB je susedná vrstva endotelových buniek, ktoré sú úzko prepojené, zabraňujúce prechodu látok cez medzibunkové priestory. Pri patologických stavoch, ako je zápal (meningitída), je narušená integrita BBB.

Skins

Mozog a miecha pokrývajú 3 vrstvy membrán - tuhé, arachnoidné, mäkké. Komponenty membrán sú spojivové tkanivá mozgu. Ich spoločnou funkciou je ochrana centrálneho nervového systému, ciev zásobujúcich centrálny nervový systém, zhromažďovanie cerebrospinálnej tekutiny.

Hlavné časti mozgu a ich funkcie

GM je rozdelené na niekoľko častí - oddelenia, ktoré vykonávajú rôzne funkcie, ale pracujú spoločne na vytvorení hlavného tela. Koľko divízií v GM a ktoré mozog je zodpovedné za určité schopnosti tela?

Čo tvorí ľudský mozog - rozdelenia:

  • Zadný mozog obsahuje pokračovanie miechy - podlhovastý a 2 ďalšie časti - pony a mozoček. Most a cerebellum spolu tvoria zadný mozog v úzkom zmysle.
  • Priemer.
  • Predná strana obsahuje stredný a koncový mozog.

Kombinácia meduly, stredného mozgu, mosta tvorí mozgový kmeň. Toto je najstaršia časť ľudského mozgu.

Medulla oblongata

Medulla je pokračovaním miechy. Nachádza sa na zadnej strane lebky.

  • vstup a výstup kraniálnych nervov;
  • signalizácia do stredísk GM, priebeh klesajúcich a vzostupných neurónových ciest;
  • umiestnenie retikulárnej formácie je koordináciou činnosti srdca, udržiavaním vazomotorického centra, stredom nepodmienených reflexov (štikanie, slinenie, prehĺtanie, kašeľ, kýchanie, vracanie);
  • v prípade dysfunkcie sú reflexy a činnosť srdca narušené (tachykardia a ďalšie problémy vrátane mŕtvice).

mozoček

Cerebellum tvorí 11% celkového mozgu.

  • centrum koordinácie motorov, kontrola fyzickej aktivity je koordinačnou súčasťou proprioceptivnej inervácie (riadenie svalového tonusu, presnosť a koordinácia svalových pohybov);
  • podpora rovnováhy, držanie tela;
  • v rozpore s funkciou cerebellum (v závislosti od stupňa poruchy) existuje hypotónia, pomalosť pri chôdzi, neschopnosť udržiavať rovnováhu, poruchy reči.

Ovládaním aktivity pohybu cerebellum vyhodnocuje informácie získané zo statokinetického aparátu (vnútorného ucha) a proprioceptorov v šľachách spojených so súčasnou polohou a pohybom tela. Cerebellum tiež dostáva informácie o plánovaných pohyboch z motorickej kôry GM, porovnáva ho so súčasnými pohybmi tela a nakoniec posiela signály do kôry. Potom vedie pohyby podľa plánu. Pomocou tejto spätnej väzby môže kôra obnoviť príkazy a poslať ich priamo do miechy. V dôsledku toho môže človek vykonávať dobre koordinované činnosti.

pons

Tvorí priečnu vlnu nad medulou oblongata, ktorá je spojená s mozočkou.

  • oblasť výstupných nervov hlavy a ukladanie ich jadier;
  • prenos signálu do vysokých a dolných centier centrálneho nervového systému.

stredný mozog

Toto je najmenšia časť mozgu, fylogeneticky starý mozgový stred, časť mozgového kmeňa. Horná časť stredného mozgu tvorí kvadripol.

  • horné kopce sa zúčastňujú vizuálnych ciest, pracujú ako vizuálne centrum, podieľajú sa na vizuálnych reflexoch;
  • nižšie kopce sa podieľajú na sluchových reflexoch - poskytujú reflexívne reakcie na zvuky, hlasitosť, reflexívne lákavé zvuk.

Stredný mozog (Diencephalon)

Diencefalón je pre terminál do značnej miery zatvorený. Je to jedna zo 4 hlavných častí mozgu. Skladá sa z 3 párov štruktúr - talamu, hypotalamu, epitálu. Oddelené časti obmedzujú komoru III. Hypofýza je spojená s hypotalamom cez lievik.

Funkcia talamiky

Talamus je 80% diencefalónu, je základom pre bočné steny komory. Jadrá talamu preorientujú senzorické informácie z tela (miecha) - bolesť, dotyk, vizuálne alebo sluchové signály - do určitých oblastí mozgu. Všetky informácie smerujúce do mozgovej kôry by sa mali preorientovať v talamu - to je vstupná brána do mozgovej kôry. Informácie v talamu sa aktívne spracovávajú, menia - zvyšujú alebo znižujú signály určené pre kôru. Niektoré z motorových talamických jadier.

Funkcia hypotalamu

Toto je spodná časť diencefalónu, na spodnej strane ktorej sú priesečníky optických nervov (chiasma opticum), smerom dole sa nachádza hypofýza a vylučuje veľké množstvo hormónov. Hypotalamus ukladá veľké množstvo jadier šedej hmoty, funkčne to je hlavné centrum pre kontrolu orgánov tela:

  • kontrola autonómneho nervového systému (parasympaticus a sympaticus);
  • ovládanie emocionálnych odpovedí - časť limbického systému zahŕňa oblasť pre strach, hnev, sexuálnu energiu, radosť;
  • regulácia telesnej teploty;
  • regulácia hladu, smädu - oblasti koncentrácie vnímania živín;
  • správanie správania - kontrola motivácie k jedlu, stanovenie množstva jedla;
  • ovládanie cyklu sleep-wake - zodpovednosť za čas cyklu spánku;
  • sledovanie endokrinného systému (systém hypotalamo-hypofýzy);
  • tvorba pamäti - získavanie informácií z hipokampu, účasť na tvorbe pamäti.

Epitalamická funkcia

Toto je najzadnejšia časť diencefalónu pozostávajúca z epifýzy - epifýzy. Vylučuje hormón melatonín. Melatonín signalizuje telu na prípravu cyklu spánku, ovplyvňuje biologické hodiny, nástup puberty atď.

Funkcia hypofýzy

Endokrinná žľaza, adenohypofýza - produkcia hormónov (GH, ACTH, TSH, LH, FSH, prolaktín); neurohypofýza - sekrécia hormónov produkovaných v hypotalame: ADH, oxytocín.

Záverečný mozog

Tento prvok mozgu je najväčšou časťou ľudskej CNS. Jeho povrch pozostáva zo šedej kôry. Nižšie je biela hmota a bazálna ganglia.

  • konečný mozog pozostáva z hemisfér, čo predstavuje 83% celkovej mozgovej hmotnosti;
  • medzi 2 hemisférami je hlboká pozdĺžna drážka (fissura longitudinalis cerebri), ktorá prechádza do mozgového svalu (corpus callosum), ktorá spája hemisféry a sprostredkováva spoluprácu medzi nimi;
  • na povrchu sú drážky a gyrus.
  • kontrola nervového systému - miesto ľudského vedomia;
  • tvorené šedou hmotou - tvorené z teliesok neurónov, ich dendritov a axónov; neobsahuje nervové cesty;
  • má hrúbku 2 až 4 mm;
  • tvorí 40% celkového GM.

Kôrové oblasti

Na povrchu hemisféry sú trvalé drážky, ktoré ich delia na 5 lalokov. Predný lalok (lobus frontalis) leží pred stredným sulcusom (sulcus centralis). Occipitálny lalok sa rozprestiera od stredného po parietálno-okcipitálny sulcus (sulcus parietooccipitalis).

Oblasti čelného laloku

Hlavná oblasť motora je umiestnená pred centrálnym sulcusom, kde sú umiestnené pyramídové bunky, ktorých axóny tvoria pyramídovú (kortikálnu) dráhu. Tieto cesty poskytujú presné a pohodlné pohyby tela, predovšetkým predlaktia, prsty, svaly tváre.

Premotorová kôra. Táto oblasť je umiestnená pred hlavnou oblasťou motora, riadi zložitejšie pohyby voľnej činnosti, v závislosti od senzorickej spätnej väzby - zachytenia objektov, pohybu nad prekážkami.

Centrum reči Broca sa nachádza v spodnej časti spravidla na ľavej alebo dominantnej pologuli. Centrum Broca v ľavej pologuli (ak dominuje) ovláda reč, na pravej hemisfére podporuje emocionálnu farbu hovoreného slova; táto oblasť je tiež zapojená do krátkodobej pamäte slová a reči. Centrum Broca je spojené s preferovaným použitím jednej ruky na prácu - vľavo alebo vpravo.

Vizuálna oblasť je časť motora, ktorá riadi požadované rýchle pohyby očí pri sledovaní pohybujúceho sa terča.

Olfactory region - umiestnený na základe čelných lalokov, zodpovedný za vnímanie zápachu. Čuchová kôra sa spája s čuchovými oblasťami v dolných stredoch limbického systému.

Prefrontálna kôra je veľká oblasť čelného laloku, ktorá je zodpovedná za kognitívne funkcie: myslenie, vnímanie, vedomé zapamätanie si informácií, abstraktné myslenie, sebapoznanie, sebaovládanie, vytrvalosť.

Oblasti parietálneho laloku

Citlivá oblasť kôry je umiestnená hneď za centrálnym slimónom. Zodpovedný za vnímanie všeobecných telesných pocitov - vnímanie kože (dotyk, teplo, chlade, bolesť), chuť. Toto centrum dokáže lokalizovať priestorové vnímanie.

Kóma citlivá oblasť - umiestnená za citlivou. Podieľa sa na rozpoznávaní objektov v závislosti od ich formy na základe predchádzajúcich skúseností.

Oblasti okcipitálneho laloku

Hlavná oblasť videnia je umiestnená na konci okcipitálneho laloku. Dostáva vizuálne informácie zo sietnice, spracováva informácie z oboch očí. Tu je vnímaná orientácia objektov.

Asociačná vizuálna oblasť je umiestnená pred hlavnou, pomáha s ňou určiť farbu, tvar a pohyb objektov. Pomáha tiež s ostatnými časťami mozgu cez predné a zadné cesty. Predná cesta prechádza pozdĺž spodného okraja hemisfér, zúčastňuje sa na rozpoznávaní slov pri čítaní, rozpoznávaní tvárí. Zadná cesta prechádza do parietálneho laloku, zúčastňuje sa priestorových spojení medzi objektmi.

Časové oblasti laloku

Počutie a vestibulárna oblasť sú umiestnené v časovom laloku. Hlavná a asociačná oblasť sa líši. Hlavný vníma hlasitosť, ihrisko, rytmus. Asociačné - založené na zapamätaní zvukov, hudby.

Rečová oblasť

Oblasť reči je rozsiahla oblasť spojená s rečou. Dominuje ľavú hemisféru (na pravej strane). K dnešnému dňu bolo identifikovaných 5 oblastí:

  • Zóna Broca (tvorba reči);
  • Zóna Wernicke (porozumenie reči);
  • bočná prefrontálna kôra pred a pod oblasťou Broca (analýza reči);
  • oblasť časového laloku (koordinácia sluchových a vizuálnych aspektov reči);
  • vnútorný lalok - artikulácia, rozpoznanie rytmu, vyjadrené slová.

Pravá hemisféra nie je zapojená do správneho rečového procesu, ale pracuje na interpretácii slov a ich emocionálnom sfarbení.

Bočné hemisféry

Existujú rozdiely vo fungovaní ľavej a pravej hemisféry. Obe hemisféry koordinujú opačné časti tela, majú rôzne kognitívne funkcie. Pre väčšinu ľudí (90-95%) ovláda ľavá hemisféra najmä jazykové zručnosti, matematiku, logiku. Naopak, pravá hemisféra ovláda vizuálne priestorové schopnosti, výrazy tváre, intuíciu, emócie, umelecké a hudobné schopnosti. Pravá hemisféra pracuje s veľkým obrázkom a ľavá - s malými detailmi, ktoré potom logicky vysvetľuje. Vo zvyšku populácie (5-10%) sú funkcie oboch hemisfér opačné, alebo obe hemisféry majú rovnaký stupeň kognitívnych funkcií. Funkčné rozdiely medzi pologuľami majú tendenciu byť vyššie u mužov ako u žien.

Bazálna ganglia

Bazálna ganglia je hlboko v bielej hmote. Pracujú ako komplexná nervová štruktúra, ktorá podporuje kôru na ovládanie pohybov. Štartujú, zastavujú, regulujú intenzitu voľných pohybov, sú ovládané mozgovou kôrou, môžu vybrať vhodné svaly alebo pohyby pre konkrétnu úlohu, potláčajú protichodné svaly. V rozpore s ich funkciou sa vyvíja Parkinsonova choroba, Huntingtonova choroba.

Cerebrospinálna tekutina

Cerebrospinálna tekutina je číra tekutina, ktorá obklopuje mozog. Objem tekutiny je 100 až 160 ml, kompozícia je podobná krvnej plazme, z ktorej vychádza. Avšak cerebrospinálna tekutina obsahuje viac sodíkových a chloridových iónov, menej proteínov. Bunky obsahujú iba malú časť (asi 20%), najväčšie percento je v subarachnoidnom priestore.

funkcie

Cerebrospinálna tekutina tvorí tekutú membránu, uľahčuje štruktúry CNS (znižuje hmotnosť GM na 97%), chráni proti poškodeniu vlastnou hmotnosťou, šokom, vyživuje mozog, odstraňuje odpad z nervových buniek, pomáha prenášať chemické signály medzi rôznymi časťami CNS.

ĽUDSKÝ BRAIN

ĽUDSKÝ BRAIN, orgán, ktorý koordinuje a reguluje všetky vitálne funkcie tela a ovláda správanie. Všetky naše myšlienky, pocity, pocity, túžby a pohyby sú spojené s prácou mozgu a ak nefunguje, človek ide do vegetatívneho stavu: stratila sa schopnosť akýchkoľvek akcií, pocitov alebo reakcií na vonkajšie vplyvy. Tento článok sa zameriava na ľudský mozog, komplexnejší a vysoko organizovaný ako mozog zvierat. Existujú však významné podobnosti v štruktúre ľudského mozgu a iných cicavcov, ako v skutočnosti väčšina druhov stavovcov.

Centrálny nervový systém (CNS) pozostáva z mozgu a miechy. Je spojená s rôznymi časťami tela periférnymi nervami - motorickými a senzorickými. Pozri tiež NERVOUS SYSTEM.

Mozog je symetrická štruktúra, podobne ako väčšina iných častí tela. Pri narodení má hmotnosť približne 0,3 kg, zatiaľ čo u dospelého človeka je cca. 1,5 kg. Pri externom vyšetrení mozgu priťahujú pozornosť dve veľké hemisféry, ktoré skrývajú hlbšie útvary. Povrch pologuli je pokrytý drážkami a konvoly, ktoré zvyšujú povrch mozgovej kôry (vonkajšia vrstva mozgu). Za mozočkou je umiestnený, ktorého povrch je tenšie rezaný. Pod veľkými hemisférami je mozgový kmeň, ktorý prechádza do miechy. Nervy opúšťajú kmeň a miechu, pozdĺž ktorých prechádzajú informácie z vnútorných a vonkajších receptorov do mozgu a signály do svalov a žliaz prúdia opačným smerom. 12 párov kraniálnych nervov sa pohybuje od mozgu.

V mozgu sa rozlišuje šedá hmota, pozostávajúca hlavne z telies nervových buniek a tvorby kôry a bielej hmoty - nervových vlákien, ktoré tvoria vodivé cesty (úseky) spájajúce rôzne časti mozgu a tiež vytvárajú nervy, ktoré presahujú centrálny nervový systém a idú do rôznych orgánov.

Mozog a miecha sú chránené kostnými prípadmi - lebkou a chrbticou. Medzi substanciou mozgu a kostnatými stenami sú tri mušle: vonkajšie - dura mater, vnútorné - mäkké a medzi nimi tenké arachnoidy. Priestor medzi membránami je naplnený cerebrospinálnou mozgovou tekutinou, ktorá je zložená z krvnej plazmy, vytváraná v intracerebrálnych dutinách (mozgových komorách) a cirkuluje v mozgu a mieche, dodáva ju živinami a ďalšími faktormi nevyhnutnými pre životnú aktivitu.

Krvný prívod do mozgu je zabezpečený predovšetkým karotickými tepnami; v základni mozgu sú rozdelené na veľké vetvy, ktoré idú do rôznych častí. Aj keď hmotnosť mozgu je iba 2,5% telesnej hmotnosti, stále a denne a v noci dostáva 20% krvi, ktorá cirkuluje v tele a teda aj kyslík. Zásoby energie samotného mozgu sú mimoriadne malé, takže sú extrémne závislé od dodávky kyslíka. Existujú ochranné mechanizmy, ktoré môžu podporiť krvný obeh mozgu v prípade krvácania alebo zranenia. Funkciou cerebrálnej cirkulácie je aj prítomnosť tzv. hematoencefalickú bariéru. Skladá sa z niekoľkých membrán, ktoré obmedzujú priepustnosť cievnych stien a tok mnohých zlúčenín z krvi do substancie mozgu; teda táto bariéra vykonáva ochranné funkcie. Napríklad mnohé liečivé látky neprenikajú cez ne.

Mozgové bunky

CNS bunky sa nazývajú neuróny; ich funkciou je spracovanie informácií. V ľudskom mozgu z 5 až 20 miliárd neurónov. Štruktúra mozgu zahŕňa aj gliové bunky, existuje asi 10 krát viac ako neuróny. Glia vyplní priestor medzi neurónmi, vytvára nosnú kostru nervového tkaniva a tiež vykonáva metabolické a iné funkcie.

Neurón, rovnako ako všetky ostatné bunky, je obklopený polopriepustnou (plazmovou) membránou. Z bunkového tela sa odchyľujú dva typy procesov - dendrity a axóny. Väčšina neurónov má veľa rozvetvujúcich sa dendritov, ale len jeden axon. Dendrity sú zvyčajne veľmi krátke, zatiaľ čo dĺžka axónu sa pohybuje od niekoľkých centimetrov do niekoľkých metrov. Telo neurónu obsahuje jadro a iné organely, rovnako ako v iných bunkách tela (pozri tiež CELL).

Nervové impulzy.

Prenos informácií v mozgu, rovnako ako nervový systém ako celok, sa vykonáva pomocou nervových impulzov. Rozširujú sa v smere od bunkového tela až po koncovú časť axónu, ktorá sa môže rozvetviť a vytvára súbor koncoviek v kontakte s inými neurónmi cez úzku štrbinu, synapsiu; prenos impulzov prostredníctvom synapsie je sprostredkovaný chemickými látkami - neurotransmitermi.

Nervový impulz zvyčajne pochádza z dendritov - tenkých vetvových procesov neurónu, ktoré sa špecializujú na získanie informácií z iných neurónov a ich prenos do tela neurónu. Na dendritoch av menšom počte existujú tisíce synapsií na bunkovom tele; je to cez axonové synapsy, prenášajúce informácie z tela neurónu, prechádza to dendritom iných neurónov.

Koniec axónu, ktorý tvorí presynaptickú časť synapsie, obsahuje malé vezikuly s neurotransmiterom. Keď impulz dosiahne presynaptickú membránu, neurotransmiter z vezikuly sa uvoľní do synaptickej štrbiny. Koniec axónu obsahuje len jeden typ neurotransmitera, často v kombinácii s jedným alebo viacerými typmi neuromodulátorov (pozri nižšie Mozková neurochémia).

Neurotransmiter uvoľnený z axonovej presynaptickej membrány sa viaže na receptory na dendritoch postsynaptického neurónu. Mozog používa celý rad neurotransmiterov, z ktorých každý je spojený s jeho konkrétnym receptorom.

Receptory na dendritoch sú spojené s kanálmi v polopriepustnej postsynaptickej membráne, ktoré riadia pohyb iónov membránou. V kľude má neurón elektrický potenciál 70 milivoltov (potenciál pokoja), zatiaľ čo vnútorná strana membrány je negatívne nabitá vzhľadom na vonkajšiu stranu. Aj keď existujú rôzne mediátory, všetky majú stimulujúci alebo inhibičný účinok na postsynaptický neurón. Stimulačný účinok sa dosahuje zvýšením prietoku určitých iónov, najmä sodíka a draslíka, cez membránu. V dôsledku toho sa negatívny náboj vnútorného povrchu znižuje - dochádza k depolarizácii. Brzdný účinok sa prejavuje hlavne zmenami toku draslíka a chloridov, v dôsledku čoho sa negatívny náboj vnútorného povrchu stáva väčším ako v kľude a dochádza k hyperpolarizácii.

Funkciou neurónu je integrovať všetky vplyvy vnímané cez synapsí na jeho telo a dendrity. Vzhľadom na to, že tieto vplyvy môžu byť excitatívne alebo inhibične a nezhodia sa v čase, musí neurón vypočítať celkový účinok synaptickej aktivity ako funkciu času. Ak excitačný účinok prevažuje nad inhibičným a depolarizácia membrány presahuje prahovú hodnotu, aktivuje sa určitá časť neurónovej membrány - v oblasti bázy axónu (axon tubercle). V dôsledku otvorenia kanálov pre ióny sodíka a draslíka vzniká akčný potenciál (nervový impulz).

Tento potenciál sa ďalej rozširuje pozdĺž axónu na jeho koniec rýchlosťou od 0,1 m / s do 100 m / s (čím silnejší je axon, tým vyššia je rýchlosť vedenia). Keď akčný potenciál dosiahne koniec axónu, aktivuje sa iný typ iónových kanálov v závislosti od potenciálneho rozdielu kalciových kanálov. Podľa nich vstupuje vápnik do axónu, čo vedie k mobilizácii vezikúl s neurotransmiterom, ktorý sa blíži k presynaptickej membráne, splynie s ním a uvoľňuje neurotransmiter do synapsie.

Myelínové a gliové bunky.

Mnoho axónov je pokrytých myelínovým puzdrom, ktoré je tvorené opakovane krútenou membránou gliových buniek. Myelín pozostáva prevažne z lipidov, ktoré majú charakteristický vzhľad bielej hmoty mozgu a miechy. Vďaka myelínovému puzdru sa zvyšuje rýchlosť vykonávania akčného potenciálu pozdĺž axónu, pretože ióny sa môžu pohybovať cez axónovú membránu len v miestach, ktoré nie sú pokryté myelínom - tzv. zachytenie Ranvier. Medzi záchvatmi sa impulzy vedú pozdĺž myelínového puzdra ako cez elektrický kábel. Keďže otvorenie kanála a prechod iónov cez ňu trvá určitý čas, eliminácia konštantného otvárania kanálikov a obmedzenie ich rozsahu na oblasti s malou membránou, ktoré nie sú pokryté myelínom, urýchľuje vedenie impulzov pozdĺž axónu asi 10-krát.

Len časť gliových buniek sa podieľa na tvorbe myelínového puzdra nervov (Schwannových buniek) alebo nervových tkanív (oligodendrocyty). Oveľa početnejšie gliové bunky (astrocyty, mikrogliocyty) vykonávajú ďalšie funkcie: tvoria podpornú kostru nervového tkaniva, zabezpečujú svoje metabolické potreby a zotavujú sa z poranení a infekcií.

AKO BRAKÁ PRACUJE

Zvážte jednoduchý príklad. Čo sa stane, keď vezmeme ceruzku na stôl? Svetlo odrazené od ceruzky sa zaostrí v oku šošovkou a smeruje do sietnice, kde sa objaví obraz ceruzky; je vnímaná zodpovedajúcimi bunkami, z ktorých signál smeruje k hlavným senzoricky prenášajúcim jadrom mozgu umiestneným v talamu (vizuálny tuberkul), hlavne v tej časti, ktorá sa nazýva laterálne génikulárne telo. Sú aktivované mnohé neuróny, ktoré reagujú na rozloženie svetla a tmy. Axóny neurónov bočného zalomeného tela sa dostávajú do primárnej vizuálnej kôry, ktorá sa nachádza v okcipitálnom laloku veľkých hemisfér. Impulzy, ktoré pochádzajú z talamu do tejto časti kôry, sa transformujú do komplexnej sekvencie vypúšťania kortikálnych neurónov, z ktorých niektoré reagujú na hranicu medzi ceruzkou a stolom, iné do rohov v obrázku ceruzky atď. Z primárnej vizuálnej kôry vstupujú informácie o axónoch do asociačnej vizuálnej kôry, kde sa rozpoznáva vzor, ​​v tomto prípade ceruzka. Rozpoznanie v tejto časti kôry je založené na predtým nahromadenej znalosti vonkajších obrysov objektov.

Plánovanie pohybu (t.j. zachytenie ceruzky) sa pravdepodobne vyskytuje v kôre predných lalokov mozgových hemisfér. V rovnakej oblasti kôry sa nachádzajú motorické neuróny, ktoré poskytujú príkazy svalom ruky a prstom. Prístup ruky k ceruzke je riadený vizuálnym systémom a interreceptormi, ktoré vnímajú polohu svalov a kĺbov, z ktorých informácie vstupujú do centrálneho nervového systému. Keď vezmeme ceruzku v ruke, receptory na prstoch, ktoré vnímajú tlak, nám hovoria, či prsty držia ceruzku dobre a aké úsilie by malo byť, aby sme ju držali. Ak chceme napísať svoje meno v ceruzke, musíme aktivovať ďalšie informácie uložené v mozgu, ktoré poskytujú tento zložitejší pohyb a vizuálna kontrola pomôže zvýšiť jeho presnosť.

Vo vyššie uvedenom príklade možno vidieť, že vykonávanie pomerne jednoduchých úkonov zahŕňa rozsiahle oblasti mozgu prechádzajúce z kôry do subkortikálnych oblastí. Pri komplexnejšom správaní spojenom s rečou alebo myslením sa aktivujú iné neurálne obvody, ktoré pokrývajú ešte rozsiahlejšie oblasti mozgu.

HLAVNÉ ČASTI BRAIN

Mozog môže byť rozdelený do troch hlavných častí: predného mozgu, mozgového kmeňa a malého mozgu. V prednom mozgu sa vylučujú cerebrálne hemisféry, talamus, hypotalamus a hypofýza (jedna z najdôležitejších neuroendokrinných žliaz). Kmeňový kmeň pozostáva z medulla oblongata, pons (pons) a stredného mozgu.

Veľké hemisféry

- najväčšia časť mozgu, zložka u dospelých približne 70% jej hmotnosti. Normálne sú hemisféry symetrické. Sú prepojené masívnym zväzkom axónov (corpus callosum), ktoré poskytujú výmenu informácií.

Každá hemisféra pozostáva zo štyroch lalokov: čelnej, parietálnej, temporálnej a okcipitálnej. Kôra predných lalokov obsahuje centrá, ktoré regulujú pohybovú aktivitu, ako aj pravdepodobne strediská plánovania a prognózy. V kôre parietálnych lalokov, ktoré sa nachádzajú za čelnými, sú zóny telesných pocitov vrátane pocitu dotyku a kĺbu a svalového pocitu. Bočne k parietálnemu laloku prilieha k temporálnemu, v ktorom sa nachádza primárna sluchová kôra, rovnako ako centrá reči a iné vyššie funkcie. Chrbát mozgu zaberá okcipitálny lalok umiestnený nad mozočkou; jeho kôra obsahuje zóny vizuálnych pocitov.

Oblasti kôry, ktoré nie sú priamo spojené s reguláciou pohybov alebo analýzou senzorických informácií, sa označujú ako asociatívne kôry. V týchto špecializovaných zónach sa vytvárajú asociačné spojenia medzi rôznymi oblasťami a časťami mozgu a informácie, ktoré z nich pochádzajú, sú integrované. Asociačná kôra poskytuje také komplexné funkcie ako učenie, pamäť, reč a myslenie.

Subkortikálne štruktúry.

Pod kôrou je niekoľko dôležitých štruktúr mozgu alebo jadier, ktoré sú zhluky neurónov. Medzi ne patria talamus, bazálne ganglia a hypotalamus. Thalamus je hlavným jadrom prenášajúcim senzory; dostáva informácie z zmyslov a následne ich posiela do príslušných častí senzorickej kôry. Existujú aj nešpecifické oblasti, ktoré sú spojené s takmer celým kôrou a pravdepodobne poskytujú procesy jeho aktivácie a udržiavanie bdelosti a pozornosti. Bazálna ganglia je súbor jadier (takzvaná škrupina, bledá guľa a kaudátové jadro), ktoré sa podieľajú na regulácii koordinovaných pohybov (štart a zastavenie).

Hypotalamus je malá oblasť v podstate mozgu, ktorá sa nachádza pod talamom. Bohatá krv je hypotalamus dôležitým centrom, ktorý kontroluje homeostatické funkcie tela. Produkuje látky, ktoré regulujú syntézu a uvoľňovanie hormónov hypofýzy (pozri tiež HYPofýza). V hypotalame je mnoho jadier, ktoré vykonávajú špecifické funkcie, ako je regulácia metabolizmu vody, distribúcia uloženého tuku, telesná teplota, sexuálne správanie, spánok a bdenie.

Brainový kmeň

nachádzajúcich sa v spodnej časti lebky. Spája miechu s predným mozgom a skladá sa z medulla oblongata, pons, strednej a diencephalon.

Prostredníctvom stredného a medziľahlého mozgu, ako aj celého kmeňa prejdite motorové cesty vedúce k miechy, ako aj niektoré citlivé cesty od miechy k nadmerným častiam mozgu. Pod stredným mozgom je most spojený nervovými vláknami s mozočkou. Najspodnejšia časť kmeňa - medulla - priamo prechádza do miechy. V medulla oblongata sa nachádzajú centrá, ktoré regulujú činnosť srdca a dýchanie v závislosti od vonkajších okolností a tiež kontrolujú krvný tlak, žalúdočnú a intestinálnu pohyblivosť.

Na úrovni kmeňa sa pretínajú cesty, ktoré spájajú každú mozgovú hemisféru s mozočkou. Preto každá hemisféra ovláda opačnú stranu tela a je pripojená k opačnej hemisfére mozočku.

mozoček

umiestnených pod okcipitálnymi lalokmi mozgových hemisfér. Prostredníctvom ciest mosta je pripojený k nadmerným častiam mozgu. Cerebellum reguluje jemné automatické pohyby, koordinuje činnosť rôznych svalových skupín pri vykonávaní stereotypných behaviorálnych činností; tiež neustále riadi polohu hlavy, trupu a končatín, t.j. zapojených do udržiavania rovnováhy. Podľa najnovších údajov hrá cerebell veľmi dôležitú úlohu pri formovaní motorických zručností a pomáha zapamätať si postupnosť pohybov.

Iné systémy.

Limbickým systémom je široká sieť prepojených oblastí mozgu, ktoré regulujú emocionálne stavy, ako aj zabezpečujú učenie a pamäť. Medzi jadrá, ktoré tvoria limbický systém, patria amygdala a hipokampus (zahrnuté v časovom laloku), ako aj hypotalamus a takzvané jadro. priehľadná septa (umiestnená v subkortikálnych oblastiach mozgu).

Retikulárna formácia je sieť neurónov, ktorá sa tiahne cez celý trup až po talamus a ďalej je spojená s rozsiahlymi oblasťami kôry. Podieľa sa na regulácii spánku a bdelosti, udržiava aktívny stav mozgovej kôry a prispieva k zameraniu pozornosti na určité objekty.

BRAIN ELEKTRICKÁ ČINNOSŤ

Pomocou elektród umiestnených na povrchu hlavy alebo zavedených do substancie mozgu je možné fixovať elektrickú aktivitu mozgu v dôsledku vypúšťania jeho buniek. Zaznamenávanie elektrickej aktivity mozgu elektródami na povrchu hlavy sa nazýva elektroencefalogram (EEG). Neumožňuje zaznamenávanie vypúšťania jednotlivých neurónov. Iba v dôsledku synchronizovanej aktivity tisícov alebo miliónov neurónov sa na zaznamenanej krivke objavujú značné kmity (vlny).

Pri neustálej registrácii na EEG sa odhaľujú cyklické zmeny, ktoré odrážajú celkovú úroveň aktivity jednotlivca. V stave aktívneho bdelosti zachytáva EEG nízke amplitúdy ne-rytmických beta-vln. V stave pokojnej bdelosti s uzavretými očami prevažujú alfa vlny s frekvenciou 7-12 cyklov za sekundu. Výskyt spánku je indikovaný výskytom pomalých vĺn s vysokou amplitúdou (delta vlny). Počas obdobia snívania sa na EEG znova objavia beta vlny a na základe EEG sa môže vytvoriť falošný dojem, že osoba je prebudená (teda termín "paradoxný spánok"). Sny sú často sprevádzané rýchlymi pohybmi očí (s uzavretými viečkami). Preto sa snívanie nazýva aj spánok s rýchlymi pohybmi očí (pozri tiež SLEEP). EEG umožňuje diagnostikovať niektoré ochorenia mozgu, najmä epilepsiu (pozri EPILEPSY).

Ak zaregistrujete elektrickú aktivitu mozgu počas pôsobenia určitého stimulu (vizuálny, sluchový alebo hmatový), môžete identifikovať tzv. evokované potenciály - synchrónne výboje určitej skupiny neurónov, ktoré vznikajú v reakcii na špecifický vonkajší stimul. Štúdia evokovaných potenciálov umožnila objasniť lokalizáciu funkcií mozgu, najmä spojiť funkciu reči s určitými oblasťami temporálnych a čelných lalokov. Táto štúdia pomáha aj pri hodnotení stavu senzorických systémov u pacientov s poruchou citlivosti.

BRAŤOVÁ NEUROCHÉMIA

Najdôležitejšími neurotransmitermi mozgu sú acetylcholín, norepinefrín, serotonín, dopamín, glutamát, kyselina gama-aminomaslová (GABA), endorfíny a enkefalíny. Okrem týchto známych látok je veľké množstvo ďalších, ktoré ešte neboli skúmané, pravdepodobne fungujúce v mozgu. Niektoré neurotransmitery pôsobia len v určitých oblastiach mozgu. Takže endorfíny a enkefalíny sa nachádzajú len v dráhach, ktoré vedú bolestivé impulzy. Iné mediátory, ako je glutamát alebo GABA, sú rozšírenejšie.

Účinok neurotransmiterov.

Ako už bolo uvedené, neurotransmitery pôsobiace na postsynaptickú membránu menia svoju vodivosť na ióny. Často sa to deje prostredníctvom aktivácie v postsynaptickom neuróne druhého "mediátorového" systému, napríklad cyklického adenozínmonofosfátu (cAMP). Účinok neurotransmiterov môže byť modifikovaný pod vplyvom inej triedy neurochemických látok - peptidových neuromodulátorov. Uvoľnené presynaptickou membránou súčasne s mediátorom, majú schopnosť zosilňovať alebo inak meniť účinok mediátorov na postsynaptickú membránu.

Nedávno objavený endorfín-enkefalínový systém je dôležitý. Enkefalíny a endorfíny sú malé peptidy, ktoré inhibujú vedenie bolestivých impulzov väzbou na receptory v CNS, vrátane vo vyšších zónach kôry. Táto rodina neurotransmiterov potláča subjektívnu vnímanie bolesti.

Psychoaktívne lieky

- látky, ktoré sa môžu špecificky viazať na určité receptory v mozgu a spôsobiť zmeny v správaní. Identifikovali niekoľko mechanizmov ich konania. Niektoré majú vplyv na syntézu neurotransmiterov, iné na ich zhromažďovanie a uvoľňovanie zo synaptických vezikúl (napríklad amfetamín spôsobuje rýchle uvoľnenie norepinefrínu). Tretím mechanizmom je viazať sa na receptory a napodobňovať pôsobenie prirodzeného neurotransmiteru, napríklad účinok LSD (dietylamid kyseliny lysergovej) sa vysvetľuje jeho schopnosťou viazať sa na serotonínové receptory. Štvrtý typ účinku liečiva je blokáda receptora, t.j. antagonizmus s neurotransmitermi. Takéto široko používané antipsychotiká ako fenotiazíny (napríklad chlórpromazín alebo aminazín) blokujú dopamínové receptory a tým znižujú účinok dopamínu na postsynaptické neuróny. Nakoniec posledným bežným mechanizmom účinku je inhibícia inaktivácie neurotransmiterov (mnohé pesticídy zabraňujú inaktivácii acetylcholínom).

Dlho je známe, že morfín (purifikovaný makový výrobok ópia) má nielen výrazný analgetický (analgetický) účinok, ale aj schopnosť spôsobiť eufóriu. Preto sa používa ako liek. Účinok morfínu je spojený s jeho schopnosťou viazať sa na receptory ľudského endorfín-enkefalínového systému (pozri tiež DRUG). Je to len jeden z mnohých príkladov skutočnosti, že chemická látka iného biologického pôvodu (v tomto prípade rastlinného pôvodu) je schopná ovplyvňovať fungovanie mozgu zvierat a ľudí a interagovať so špecifickými neurotransmiterovými systémami. Ďalším dobre známym príkladom je curare, odvodený z tropickej rastliny a schopný blokovať acetylcholínové receptory. Indiáni z Južnej Ameriky namazali kuriérové ​​šípky, používajúc svoj paralyzujúci účinok spojený s blokádou neuromuskulárneho prenosu.

BRAINOVÉ ŠTÚDIE

Výskum mozgu je ťažký z dvoch hlavných dôvodov. Po prvé, mozog, bezpečne chránený lebkou, nemôže byť pristupovaný priamo. Po druhé, neuróny mozgu sa neregenerujú, takže akýkoľvek zásah môže viesť k nezvratnému poškodeniu.

Napriek týmto ťažkostiam je od pradávna známy výskum mozgu a niektoré formy jeho liečby (predovšetkým neurochirurgická intervencia). Archeologické nálezy ukazujú, že už v staroveku človek praskol lebku, aby získal prístup k mozgu. Obzvlášť intenzívny výskum mozgu bol vykonaný počas obdobia vojny, keď bolo možné pozorovať rôzne poranenia hlavy.

Poškodenie mozgu v dôsledku zranenia na prednej strane alebo zranenia utrpeného v čase mieru je druh experimentu, pri ktorom sú niektoré časti mozgu zničené. Keďže toto je jediná možná forma "experimentu" na ľudský mozog, ďalšou dôležitou metódou výskumu boli pokusy na laboratórnych zvieratách. Pri pozorovaní behaviorálnych alebo fyziologických dôsledkov poškodenia konkrétnej štruktúry mozgu možno posúdiť jej funkciu.

Elektrická aktivita mozgu u pokusných zvierat sa zaznamenáva pomocou elektród umiestnených na povrchu hlavy alebo mozgu alebo zavedených do substancie mozgu. Je teda možné určiť aktivitu malých skupín neurónov alebo jednotlivých neurónov, ako aj identifikovať zmeny v iónových tokoch cez membránu. Pomocou stereotaktického zariadenia, ktoré umožňuje vstup elektródy do určitého miesta v mozgu, sa skúmajú jej neprístupné hĺbkové úseky.

Ďalším prístupom je odstránenie malých oblastí živého mozgového tkaniva, po ktorom sa jeho existencia zachováva ako plátok umiestnený v živnom médiu alebo bunky sú oddelené a študované v bunkových kultúrach. V prvom prípade môžete preskúmať interakciu neurónov, v druhej - aktivitu jednotlivých buniek.

Pri štúdiu elektrickej aktivity jednotlivých neurónov alebo ich skupín v rôznych oblastiach mozgu sa počiatočná aktivita zvyčajne najprv zaznamená, potom sa určuje účinok konkrétneho účinku na funkciu buniek. Podľa iného spôsobu sa prostredníctvom implantovanej elektródy aplikuje elektrický impulz, aby sa umelo aktivovali najbližšie neuróny. Takže môžete skúmať účinky určitých oblastí mozgu na ostatných oblastiach. Tento spôsob elektrickej stimulácie bol užitočný pri štúdiu systémov aktivácie stoniek prechádzajúcich cez stredný mozog; je tiež uchvátená, keď sa pokúšame pochopiť, ako sa procesy učenia a pamäti uskutočňujú na synaptickej úrovni.

Pred sto rokmi sa ukázalo, že funkcie ľavého a pravého hemisféry sú odlišné. Francúzsky chirurg P. Brock, pozorujúci pacientov s cerebrovaskulárnou príhodou (mŕtvica), zistil, že iba chorí s poškodením ľavej hemisféry trpia poruchou reči. Ďalšie štúdie špecializácie hemisféry pokračovali s využitím iných metód, napríklad záznamu EEG a evokovaných potenciálov.

V posledných rokoch boli použité komplexné technológie na získanie obrázkov (vizualizácií) mozgu. Počítačová tomografia (CT) tak urobila revolučnú klinickú neurológiu, ktorá umožnila získať podrobný (vrstvený) obraz mozgových štruktúr in vivo. Ďalšia zobrazovacia metóda - pozitrónová emisná tomografia (PET) - poskytuje obraz o metabolickej aktivite mozgu. V tomto prípade sa krátkodobý rádioizotop zavedie do osoby, ktorá sa hromadí v rôznych častiach mozgu, a tým viac, tým vyššia je ich metabolická aktivita. Pomocou PET bolo tiež preukázané, že rečové funkcie väčšiny skúmaných sú spojené s ľavou pologuľou. Keďže mozog pracuje s obrovským počtom paralelných štruktúr, PET poskytuje také informácie o mozgových funkciách, ktoré nemožno dosiahnuť pomocou jednotlivých elektród.

Výskum mozgu spravidla prebieha spravidla s použitím kombinácie metód. Napríklad americký neurobiológ R. Sperri so zamestnancami použil ako liečebný postup na zníženie corpus callosum (zväzok axónov spojujúcich obe hemisféry) u niektorých pacientov s epilepsiou. Následne sa u týchto pacientov s "rozdeleným" mozgom skúmala hemisferická špecializácia. Zistilo sa, že pri rečových a iných logických a analytických funkciách je zodpovedná dominujúca dominantná (zvyčajne ľavá) hemisféra, zatiaľ čo nemonitorujúca hemisféra analyzuje priestorovo-časové parametre vonkajšieho prostredia. Takže sa aktivuje, keď počúvame hudbu. Mozaikový obraz mozgovej aktivity naznačuje, že existuje mnoho špecializovaných oblastí v kortexovej a subkortikálnej štruktúre; súčasná aktivita týchto oblastí potvrdzuje koncept mozgu ako výpočtového zariadenia s paralelným spracovaním údajov.

S nástupom nových výskumných metód sa pravdepodobne zmení predstavy o mozgových funkciách. Použitie zariadení, ktoré nám umožňujú získať "mapu" metabolickej aktivity rôznych častí mozgu, ako aj použitie molekulárno-genetických prístupov, by malo prehĺbiť naše vedomosti o procesoch v mozgu. Pozri tiež neuropsychológiu.

Porovnávacia anatómia

V rôznych typoch stavovcov je mozog pozoruhodne podobný. Pri porovnávaní na úrovni neurónov nájdeme odlišnú podobnosť takých charakteristík ako použité neurotransmitery, kolísanie koncentrácií iónov, bunkové typy a fyziologické funkcie. Základné rozdiely sa odhaľujú iba v porovnaní s bezstavovcami. Neuróny bezobratlých sú oveľa väčšie; často sú navzájom prepojené nie chemickými, ale elektrickými synapsami, ktoré sa zriedkavo nachádzajú v ľudskom mozgu. V nervovom systéme bezstavovcov sú detekované niektoré neurotransmitery, ktoré nie sú charakteristické pre stavovce.

Medzi stavovcami sa rozdiely v štruktúre mozgu týkajú najmä pomeru jednotlivých štruktúr. Pri posudzovaní podobností a rozdielov v mozgu rýb, obojživelníkov, plazov, vtákov, cicavcov (vrátane ľudí) je možné odvodiť niekoľko všeobecných vzorov. Po prvé, všetky tieto zvieratá majú rovnakú štruktúru a funkcie neurónov. Po druhé, štruktúra a funkcie miechy a mozgového kmeňa sú veľmi podobné. Po tretie, vývoj cicavcov sprevádza výrazné zvýšenie kortikálnych štruktúr, ktoré dosahujú maximálny rozvoj primátov. V obojživelníkov tvorí kôra len malú časť mozgu, zatiaľ čo u ľudí je to dominantná štruktúra. Predpokladá sa však, že princípy fungovania mozgu všetkých stavovcov sú takmer rovnaké. Rozdiely sú determinované počtom interneuronových spojení a interakcií, ktoré sú vyššie, čím je mozog zložitejší. Pozri tiež ANATOMY COMPARATIVE.

Sa Vám Páči O Epilepsii